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Zusammenfassung

Das Thema dieser Arbeit ist die Extension Complexity konvexer Polygone, was auf
Deutsch so viel wie Erweiterungskomplexität bedeutet. Die Idee dahinter ist, ein Poly-
top als lineare Abbildung eines höherdimensionalen Polytops darzustellen. Diese erwei-
terte Darstellung nennt man Extended Formulation und dessen Größe ist die Anzahl der
Facetten des höherdimensionalen Polytops.

Die Erweiterungskomplexität eines Polytops P ist nun die kleinste Größe aller erweiterten
Darstellungen dieses Polytops und man bezeichnet diese mit xc(P ).

Wir behandeln in dieser Arbeit die besten bekannten Schranken dieser Erweiterungskom-
plexität xc(P ) für konvexe Polygone.

Bisher ist bekannt, dass für ein konvexes Polygon P mit n Ecken, hier als n-Eck bezeichnet,

xc(P ) ∈ Ω(n1/2) ∩O(n2/3)

gilt. Liegen alle Punkte von P auf einem gemeinsamen Kreis, ist P also zyklisch, lässt sich
die Abschätzung asymptotisch präzise zu

xc(P ) ∈ Θ(n1/2)

verbessern.

Wir geben in dieser Arbeit einen Überblick über die Beweise, die zu den oben genannten
Schranken führen, und konzentrieren uns vor allem auf Zusammenhänge der Aussagen
und Grenzen der Vorgehensweisen.

Wir beginnen damit, den Beweis für xc(P ) ∈ O(n2/3) für allgemeine n-Ecke P darzustel-
len und dessen Grenzen aufzuzeigen.
Das Vorgehen ist dort rein geometrischer Natur und versucht für jedes n-Eck eine Teil-
folge u von Ecken zu finden, die groß genug ist und eine möglichst kleine Erweiterungs-
komplexität besitzt (für m ∈ Ω(n2/3) Ecken xc(u) ∈ O(m1/2)). Durch diese Aussage kann
man dann induktiv zeigen, dass xc(P ) ∈ O(n2/3) gilt.
Ein zentraler Satz in diesem Vorgehen erlaubt uns einfache, dreidimensionale erweiterte
Darstellungen eines vereinfachten Polygons zusammenzufügen, um eine erweiterte Dar-
stellung unseres gewünschten Polygons zu erhalten. Wir zeigen, dass dieser Satz für ein
n-Eck nur erweiterte Darstellungen der Größe Ω(n1/2) erzeugen kann.

Als nächstes geben wir einen Überblick zum Beweis von xc(P ) ∈ O(n1/2) für zyklische
n-Ecke P , wobei diese obere Schranke asymptotisch optimal ist.
Das Vorgehen benutzt hier im Kern den linear-algebraischen Ansatz, der Eigenschaften
gewisser Matrizen mit der Erweiterungskomplexität eines Polygons verbindet.

Anschließend vergleichen wir beide Vorgehensweisen und versuchen Ähnlichkeiten und
Unterschiede auszuarbeiten, auch wenn die beiden Ansätze grundlegend verschieden sind.
Wir wiederholen auch in asymptotischer Betrachtung, wie die beiden Ansätze die Schran-
ken hergeleitet haben.

Im letzten Abschnitt geben wir noch einen weiteren Beweis für xc(P ) ∈ Ω(n1/2) für
zyklische n-Ecke, damit auch für allgemeine n-Ecke. Wir verwenden dafür einen Satz, der
uns erlaubt diese untere Schranke für eine Familie von Polygonen abhängig von ihrem
gegenseitigen Abstand zu formulieren.

Wir schließen die Arbeit mit einer Übersicht über aktuelle Vermutungen zur Erweite-
rungskomplexität von Polygonen.
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Abstract

We examine the state of extended formulations for convex n-gons, focusing on bounds for
the extension complexity in particular.

First, we analyze the geometric proof of the best known upper bound xc(P ) ∈ O(n2/3)
and present the limits of some of its theorems.

Then, we outline the linear-algebraic approach, which results in xc(P ) ∈ O(n1/2) for cyclic
polygons.

Finally, we provide another proof for xc(P ) ∈ Ω(n1/2) for cyclic polygons, and therefore
for all polygons.

1 Introduction

1.1 Extension Complexity

Six linear inequalities are required to describe a regular hexagon. However, the same
polygon1 can be described by a polytope2 in R3 with five linear inequalities and a linear
projection, see Figure 1.

Figure 1. A regular hexagon as a projection of a three-dimensional polytope
with five facets. [8, Figure 1]

This is the key idea behind extended formulations. Simplifying the representation of poly-
gons by projecting simpler, higher-dimensional polytopes “down” to the desired polytope.
One can think of it as “compressing” the representation. This mental image is inspired
by the fact, that regular n-gons (i.e. polygons with n vertices), only require O(log(n))
inequalities in their compressed form [6].

This intuition is formalized as follows:

Definition 1 (Extended Formulation). Let P be a d-dimensional polytope, Q an
m-dimensional polytope and π : Rm → Rd a linear projection. The pair (Q, π) is called
an extended formulation of P , if π(Q) = P . The size of (Q, π) is defined as the number
of facets of Q.

1We define a polygon to be a two-dimensional polytope, i.e. it is convex.
2A polytope is the convex hull of a finite set of points.
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Definition 2 (Extension Complexity). The extension complexity of a polytope P is the
smallest possible size of an extended formulation of P . It is usually denoted with xc(P ).

Polytopes with a small extension complexity can be “compressed” very well with extended
formulations. Such simplified formulations can be used for building faster algorithms for
hard linear programs [17], which seems to be a driving reason for the popularity of research
in extended formulations.

1.2 Overview of Current Research

The application of extended formulations for solving hard linear problems seems promis-
ing. However, research in the past years shows unpromising results:

� The traveling salesman polytope can’t have polynomial extension complexity [4]. For
this problem, extended formulations don’t provide an improvement over traditional
methods.

� The results for the matching polytope are even worse: In contrast to the polynomial-
time algorithm for solving this problem [5], there is no polynomial-size extended
formulation [12].

That’s why the study of polygons has importance as a benchmark for extended formu-
lations in general (Braun and Pokutta called it “prototypical importance” [2]). Current
research focuses on finding good bounds for the extension complexity, rather than devel-
oping algorithms for constructing extended formulations.

There are currently two main approaches for finding bounds for the extension complexity:
The first one is the natural geometric approach. The second one is a linear-algebraic
approach based on a remarkable result of Yannakakis [17], which we recall briefly:

Definition 3 (Slack Matrix). Let P be a polytope. Then a slack matrix 3 M of P is a
nonnegative matrix, whose rows are indexed by the vertices of P and whose columns are
indexed by the linear constraints of some representation of P = {x ∈ Rd | Ax ≤ b}. The
entries of M are defined as mij = bj − ajvi, where aj is a row of A and vi is a vertex of P .

Definition 4 (Nonnegative Rank). The nonnegative rank of a nonnegative matrix
M ∈ Rn×m

≥0 is the smallest integer k, for which M = TU , where T ∈ Rn×k
≥0 and U ∈ Rk×m

≥0
are nonnegative matrices. We define rank+(M) := k.

The nonnegative rank of M can equivalently be defined as the minimum r for which the
matrix M can be written as the sum of r nonnegative matrices of (ordinary) rank 1.

Theorem 5 (see [17]). Let P be a polytope and M a slack matrix of P . Then

xc(P ) = rank+(M).

3Note that the slack matrix depends on the representation of P . So there is no unique slack matrix
to a given polytope.
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Because this document is focused on polygons, we give a concise overview of the history
of bounds and conjectures for the extension complexity of those:

Define Pn as the set of all convex polygons with n vertices. Then

pc : N→ N, n 7→ max{xc(P ) | P ∈ Pn}

is called polygon complexity. It describes the largest extension complexity for a polygon
with n vertices.

The lower bound pc(n) ∈ Ω(n1/2) is quite easy to prove, which was done many times, for
example by Fiorini, Rothvoß, and Tiwary [3] using a counting argument. In this paper
we will provide another proof for this lower bound.

The upper bound is more challenging. Only few improvements have been made for a long
time and the trivial upper bound pc(n) ≤ n could only be improved by constant factors.
One such improvement was done independently by Shitov [13] and Padrol and Pfeifle [10]
and proved that pc(n) ≤ (6n + 6)/7. The basis for their proofs was pc(7) = 6, i.e. each
heptagon has extension complexity at most 6.

Because of missing improvements, pc(n) ∈ Θ(n) was conjectured [3]. This was refuted by
Shitov [14] proving pc(n) ∈ o(n). He later improved the upper bound to pc(n) ∈ O(n2/3)
[15], which is the best known bound so far.

In summary, this is currently known about the polygon complexity:

pc(n) ∈ Ω(n1/2) ∩O(n2/3)

There is another recent paper by Kwan, Sauermann, and Zhao [8], which focuses on cyclic
polygons4. The authors proved that xc(P ) ∈ O(n1/2) for all cyclic n-gons. This led them
to propose that this upper bound could also hold for general n-gons since “cyclic polygons
seem to represent quite a diverse cross-section of the space of all polygons” [8, p. 3].

1.3 Overview of this Document

In this paper we focus on the key ideas behind the discussed papers Sublinear extensions
of polygons, Shitov [15] and Extension complexity of low-dimensional polytopes, Kwan,
Sauermann, and Zhao [8]. We will make use of examples and skip most technical detail.

In the first part we examine the results which led to the best known upper bounds. We
will start with Shitov [15], which provides the upper bound of O(n2/3) for arbitrary n-gons
by a purely geometric approach. From there we have a look at cyclic n-gons and the upper
bound of O(n1/2), which was provided by a semi-geometric/semi-algebraic approach by
Kwan, Sauermann, and Zhao [8]. Next, we try to compare these two approaches, as far
as they are comparable. First on a high level comparing key ideas and later on a more
technical level.

In the second part we give another proof of the lower bound and present the applied
theorem [1, Theorem 1]. We also give a quick overview of the key ideas behind it.

4A polygon is called cyclic, if all its vertices lie on a circle.

3



2 Upper Bounds for the Extension Complexity

2.1 Arbitrary Convex n-Gons

In this section we give a detailed overview of Sublinear extensions of polygons, Shitov [15],
which proves xc(P ) ∈ O(n2/3) for any n-gon P . We focus on the underlying ideas and
present only important arguments in more detail. In contrast to the source, we present
the results first, because, in doing so, we can highlight the reasoning more clearly.

The gist of the approach is as follows:

1. We cut the polygon into smaller slices, for which we can prove small extension
complexity. Joining these slices estimates the maximum extension complexity of
the polygon from above.

2. We prove this small extension complexity by inductively finding a large enough
subset of vertices in the slice, for which we can build a small extended formulation.
Joining these subsets will again estimate the maximum extension complexity of the
slice from above.

3. We build the small extended formulation by building specific three-dimensional ex-
tended formulations for a surrounding polygon. These are “glued” together resulting
in an extended formulation for the original set of vertices.

In Appendix A we added a graphical representation of the dependencies in the proofs of
the source. It may be of help in understanding how the statements lead to the main result
or how some statements are connected.

2.1.1 Main Result

Theorem 6 ([15, Theorem 5]). Every convex n-gon P has xc(P ) ≤ 147n2/3.

The starting point for proving this theorem is the following lemma, adopted from Weltge
[16, Proposition 3.1.1], which states that the extension complexity behaves well for unions
of polytopes:

Lemma 7 ([15, Lemma 8]). Let P and Q be polytopes5 in Rd, each different from a point.
Then

xc(conv(P ∪Q)) ≤ xc(P ) + xc(Q).

This statement enables us to split a polygon into smaller parts when estimating its ex-
tension complexity.

We will go on to define those smaller parts, which we can handle well.

Definition 8 (Turning angle). If P ⊂ R2 is a polygon, then the turning angle at a
vertex v is π − ∠v−vv+, where v− and v+ are two vertices adjacent to v in P .
In other words, it is the amount the angle at v deviates from a straight line.
The turning angle of an edge e of a polygon is the sum of the turning angles at the two
endpoints of e.

5One is tempted to think of these polytopes as being disjunct. But they can be arranged arbitrarily.
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Definition 9 (Correct sequence). A sequence v = (v1, . . . , vn) of distinct points on a plane
is called correct if these points are the vertices of their convex hull P and the segment
between any pair of consecutive points in v is an edge of P .

Unless stated otherwise, we assume that the vertices of a correct sequence are in clockwise
order.

Definition 10 (Thin sequence). Let α ∈ (0, π) and n ≥ 3 be an integer. A correct
sequence v = (v1, . . . , vn) is called α-thin, if the turning angle of the edge conv{v1, vn} in
the polygon conv v is greater than 2π − α, that is,

∠vnv1v2 + ∠v1vnvn−1 < α.

We say that v is thin, if it is α-thin for some α ∈ (0, π).

Figure 2. Examples of thin and not-thin sequences: The sequence in the
middle is the only one, which is not thin.

For thin sequences, all lines vi ∧ vj with {i, j} 6= {1, n} meet on the same side of v1 ∧ vn,
where · ∧ · is used to describe the line joining two points or the intersection of two lines.

Observation 11 (Splitting into thin sequences, [15, Observation 30]). Let P be a polygon
with n vertices, and let q ≥ 3 be an integer. Then the vertices of P can be partitioned
into at most q sets each of which is either a point or a pair of points, or a set that forms
a 2π/q-thin sequence.

Figure 3. Splitting a polygon into three thin sequences. [15, Figure 4]

Proof outline. For each set, take as many consecutive vertices until the 2π/q-thinness
would be violated. Then begin a new set, which starts with at least 2π/q higher turning
angle measured from the start. Therefore, at most q sets result in the full turning angle
of 2π covering the polygon.

Based on Observation 11 we choose to split the original n-gon into 12 distinct π/6-thin
sequences. Joining those (constantly many) sequences will not change the asymptotical
bound for the extension complexity of the original polygon in light of Lemma 7.

Now we will go on to show that each π/6-thin sequence has extension complexity O(n2/3).
We do this by inductively extracting a subsequence with a small extended formulation.
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Theorem 12 ([15, Theorem 58]). Let v be a π/6-thin sequence with n = 1024τ 3 + 8τ
vertices, where τ ∈ N. Then v contains a subsequence u with |u| ≥ 4τ 2 and xc(u) ≤ 12τ .

Proving this theorem is the objective of the rest of this section. We preempted it to
provide a better understanding of the results.

The following corollary is a direct result of it:

Corollary 13 ([15, Corollary 59]). Let v be a π/6-thin sequence with n > 263 000 vertices.

Then v contains a subsequence u with |u| ≥ 1
36
n2/3 and xc(s) ≤

(
72
43
n
)1/3

.

Proof outline. Apply Theorem 12 with τ =
⌊
(n/1032)1/3

⌋
, which gives the desired result

for n > 263 000.

Corollary 14 ([15, Corollary 60]). Let v be a π/6-thin sequence. Then

xc(v) ≤ 324
3
√

129
n2/3.

Proof outline. Use induction for n > 263 000 (n ≤ 263 000 is trivial) and apply Corol-
lary 13 and Lemma 7 for the induction step:

xc(conv v) ≤ 324
3
√

129

(
n− n2/3

36

)2/3

+

(
72n

43

)1/3

<
324
3
√

129
n2/3

We can now prove the main result.

Proof outline of Theorem 6. Using Observation 11 we split the n-gon P into twelve dis-
joint π/6-thin sequences6 with sizes n1, . . . , n12.

We apply Lemma 7 and Corollary 14 and get

xc(P ) ≤ 324
3
√

129

(
12∑
i=1

n
2/3
i

)
≤ 324

3
√

129

(
12
( n

12

)2/3)
< 147n2/3.

2.1.2 Building Small Extended Formulations

In this subsection, we build extended formulations of small size for polygons with spe-
cial properties. The key idea is to omit some vertices to obtain a simpler surrounding
polygon. For this polygon we build specific three-dimensional extended formulations with
respect to the omitted vertices. If we now combine these extended formulations, we get
a higher-dimensional extended formulation for the original polygon with small extension
complexity.

Before we can formulate this theorem, we have to introduce acute polyhedra and acute
diagrams, which help us build three-dimensional extensions for the surrounding polygon.

6Technically, we have to consider the case, when a sequence has less than three points. We omit it,
since it does not provide further insight.
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Definition 15 (Acute Polyhedron). Assume P ⊂ R3 is a polyhedron and B is one of
its facets. If all other facets F 6= B of P share an edge with B and the angle7 between
B and F is acute, then P is called an acute polyhedron with base B.8

Definition 16 (Main edge). An edge e of an acute polyhedron with base B is called
main, if exactly one endpoint of e lies on B.

Figure 4. An acute polyhedron with main edges colored.

Lemma 17. Any base vertex of an acute polyhedron belongs to a unique main edge.

Proof outline. A base vertex v with two main edges would be contained in three non-base
faces. Since each face has to include a base edge by Definition 15, two of them coincide
on the base, which is impossible for acute polyhedra.

Now follows an important lemma, which allows us to construct an acute polyhedron for
a given base, where all main edges but one have fixed direction with respect to the base.

Lemma 18 ([15, Lemma 15]). Let V be a polygon with vertices v1, . . . , vn and let
y1, . . . , yn−1 be a set of inner points of V . Then there is an acute polyhedron P with
base V such that, for any i ∈ {1, . . . , n− 1}, the image of the main edge passing from vi
under the orthogonal projection of P onto V is collinear to vi ∧ yi.

Proof outline (see Figure 5). Define the planes Hi orthogonal to V containing vi and yi.
The half-planes Fi are defined recursively with vi ∧ vi−1 as their base9 and containing
Fi+1∩Hi. Begin constructing Fn with base vn∧vn−1 having an arbitrary acute angle with
V . Iteratively construct Fn−1, . . . , F1 (all have an acute angle with V , since they contain
the ray Fi+1 ∩Hi, which heads towards the interior of V ). Now V and F1, . . . , Fn define
the acute polyhedron.

Observation 19 ([15, Observation 16]). Let P be an acute polyhedron with base B. The
orthogonal projection π of P onto the plane containing B maps the non-base points of an
acute polyhedron injectively into the interior of B.

Proof outline. Follows by definition of acute polyhedra (acute angle) and convexity of P .

7The angle between two faces A and B with a common edge e is defined as the angle between two
oriented segments that lie on A and B respectively, have their origin on e and are orthogonal to e.

8Note that all facets lie on the same side of B. Since otherwise, B would be no facet of P .
9We define v0 := vn, since v1 and vn share an edge.
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Figure 5. The construction of Figure 4 in the proof of Lemma 18.

Definition 20 (Acute diagram and lifting). Let P be an acute polyhedron with base B
and π like in Observation 19. The image of all edges of P under π gives us a diagram
which we call the acute diagram of P relative to base B. We also say that P is an acute
lifting of the corresponding diagram.

Figure 6. The acute diagram of Figure 4 with colored main edges and an
example of an acute diagram with more vertices, where blue points fix the
main arc directions as shown in Lemma 18.

We can now reformulate Lemma 18 for acute diagrams:

Corollary 21 ([15, Corollary 26]). Let V be a polygon with vertices v1, . . . , vn and let
y1, . . . , yn−1 be a set of inner points of V . Then there is an acute diagram with base V
such that, for any i ∈ {1, . . . , n− 1}, the main edge from vi lies on vi ∧ yi.

We showed that every acute polyhedron has an acute diagram. Now we want to describe
the properties of acute diagrams, which allow us to “lift” them into acute polyhedra.
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Lemma 22 (Properties of acute diagrams, [15, Lemma 19]). Let ∆ be the acute diagram
of an acute polyhedron P with base B. Then ∆ is a planar straight-line graph such that

(o) the base of ∆ is B,

(i) every node of ∆ has degree at least three,

(ii) the non-base nodes of ∆ lie in the interior of the base,

(iii) every edge of the base is an arc of ∆,

(iv) every bounded face F of ∆ contains exactly one arc eF of the base,

(v) if a non-base arc e of ∆ separates faces F , G, then e, eF , eG are concurrent.

We omit the proof, because we only lift polyhedra from diagrams in the following.

Lemma 23 (Lifting acute diagrams, [15, Lemma 25]). A planar straight-line graph ∆
satisfying (i)-(v) as in Lemma 22 is an acute diagram of some acute polyhedron P .

Proof outline. We can show that each diagram ∆ has a triangle formed by two main arcs
and one base arc e with turning angle less than π (expect in the cases, where ∆ is a
triangle or trapezoid).10

Then we use induction on the number of nodes of the base of ∆. The induction basis are
the two exceptions from above, where one can easily construct an acute polyhedron.

Figure 7. The inductive step in the proof of Lemma 23. [15, Figure 2]

For the induction step we find a triangle with base arc e like above and “remove” it by
continuing the arcs next to it (see Figure 7). The continuation meets on the “outside”
of e, since e has turning angle less than π.

From the induction hypothesis we can lift this diagram with one vertex less. We cut the
resulting polyhedron by the plane defined by our triangle to get our desired polyhedron.

We can now focus on the main result of the first part, which allows us to build small
extended formulations by combining acute polyhedra for a surrounding polygon, where
some vertices were omitted. These polyhedra are lifted from acute diagrams, which have
to include the omitted vertices in their main edges.

10In the original paper it is shown by defining a flow on the inner arcs of ∆ towards a base vertex s. For
this flow we can find two consecutive “furthest” vertices, which therefore form a triangle. If the turning
angle was too large, one can choose another s.

9



Theorem 24 (Gluing acute extensions together, [15, Theorem 28]). Let P be a polygon
with vertex set V . Let ∅ 6= S ⊆ V and δ ≥ 1 be an integer. Assume

(i) for any s ∈ S there are two vertices s′, s′′ on two edges of P adjacent to s,

(ii) there are δ points
{
s1, . . . , sδ

}
in the interior of the triangle Ts = conv {s, s′, s′′},

(iii) the triangles Ts are disjoint for different s and

(iv) for any i ∈ {1, . . . , δ} there is an acute diagram Di with base P where, for any s ∈ S,
the segment between s and si is a subset of the main edge passing from s.

⇒ xc

(
conv

(
(V \ S) ∪

⋃
s∈S

{
s′, s′′, s1, . . . , sδ

}))
≤ |V |+ |S|+ δ

Figure 8. An application of Theorem 24: Two acute diagrams confirm that
the 14-gon on the right has xc at most 10. [15, Figure 3]

Proof. We are going to construct a polytope P ′ in R2 × Rδ = {(x, y, z1, . . . , zδ)} with at
most |V |+ |S|+ δ facets, which is an extended formulation of P .

Assume that aex + bey + ce ≥ 0 is the defining inequality of an edge e of P . Then the
acute diagrams Di are lifted into three-dimensional polytopes described by z ≥ 0 and
aex + bey + ce ≥ εiez with εie > 0 for all edges e of P (we assume that all polygons are
located in the upper half-space z ≥ 0).

Then we define an auxiliary polytope P ∈ R2×Rδ with the following |V |+ δ inequalities

aex+ bey + ce ≥
δ∑
i=1

εiez,

zi ≥ 0,

10



where e runs over all edges of P and i ∈ {1, . . . , δ}.
We have dimP = δ + 2, i.e. it has full dimension, since we can find a point (x, y) in the
interior of P and ε > 0, such that (x, y, ε, . . . , ε) fulfills all inequalities strictly.

And from Observation 19 we know π(P) = P , where π(x, y, z1, . . . , zδ) = (x, y) is an
orthogonal projection.

For any s = (xs, ys) ∈ S, σs := (xs, ys, 0, . . . , 0) is a vertex of P , since it fulfills exactly
δ + 2 inequalities with equality, namely zi ≥ 0 and the two inequalities corresponding to
the edges at s.

Therefore, there are δ+ 2 rays passing from σs: Two corresponding to the edges at s and
δ of the form

(xs + αis t, ys + βis t, 0, . . . , 0, t, 0, . . . , 0), t ≥ 0, (1)

where there are i− 1 zeros before t and (αis, β
i
s) is pointing from s to si (and scaled such

that we don’t need a factor for t).

Now we define a half-space Hs, whose defining hyperplane is determined by the points
(xs′ , ys′ , 0, . . . , 0), (xs′′ , ys′′ , 0, . . . , 0) and the δ points on (1), which project to si under
π (this hyperplane is well-defined, as all those points are linearly independent). The
orientation of Hs is set such that it does not include σs.

Figure 9. Cutting P with Hs in Theorem 24 for δ = 1.

If we now intersect P with Hs, we cut the rays passing from σs at the defining points
of Hs. Since these points are all contained in an edge of P (by definition of Di), these
δ + 2 points become vertices by this cut. The different cuts themselves don’t overlap on
P , since the triangles Ts are disjoint by definition and all si lie in the interior of Ts.

So we can define P ′ = P ∩
⋂
s∈S Hs, which is given by |V | + |S| + δ inequalities, and

conclude that π(P ′) is the desired polygon.

Remark 25. There is a subtle difference between Theorem 24 and Corollary 21.

In the theorem we assume that “the segment between s and si is a subset of the main
edge”, but in the corollary we construct a diagram for which “the main edge from vi lies
on vi ∧ yi”, implying that yi can lie outside the main edge.

To understand Theorem 24 better, we examine the limits it has in application. This
observation is aside from the main argument.

Observation 26 (Limits of Theorem 24). Let P be a polygon with n vertices. By applying
Theorem 24 we obtain an extended formulation for P with size in Ω(n1/2).
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Proof. We set P := conv
(
(V \ S) ∪

⋃
s∈S
{
s′, s′′, s1, . . . , sδ

})
as in Theorem 24. We define

v := |V | and s := |S|. Throughout this proof we assume that we can apply Theorem 24
for our choice of v, s and δ. Then

n ≤ (v − s) + s(2 + δ) = v + s(1 + δ). (2)

With (2) we can express δ dependent on n, v and s:

δ ≥ n− v
s
− 1

We now define δ := (n− v)/s as the minimal possible value11 for given v and s, since the
size of the extended formulation increases with δ. This way we can define

fn(v, s) := v + s+ δ = v + s+
n− v
s

as the size of the extended formulation for given v and s.

∂

∂v
fn(v, s) = 1− 1

s
> 0

shows that v should be chosen minimal for minimal extension size. So we set v = s
according to the assumptions of Theorem 24.

fn(s, s) = s+ s+
n− s
s

= 2s+
n

s
− 1

∂

∂s
fn(s, s) = 2− n

s2
⇒ smin :=

√
n

2

∂2

∂2s
fn(s, s) =

2n

s3
> 0

This shows that fn has a minimum at smin =
√
n/2 with vmin = smin.

Finally, we can find the minimal value for fn:

fn(smin, smin) = 2
√

2n− 1

2.1.3 Finding Good Subsequences

After defining this central theorem, we have to make a way to apply it to general poly-
gons.12 Hence, we formalize the notion of “good” sequences in terms of Theorem 24.

Definition 27 (t-scattered). Let t, n ∈ N and G ⊆ {1, . . . , n}. G is called t-scattered if
for g, g′ ∈ G, g 6= g′ we have |g − g′| ≥ t.

Definition 28 (G-envelope). Assume n ≥ 5 is an integer and G ⊆ {3, 4, . . . , n − 2}
is a 3-scattered subset. If v = (v1, . . . , vn) is a thin sequence, then the G-envelope of
v is the sequence vG obtained from v by replacing the points vg−1, vg, vg+1 with og :=
(vg−2 ∧ vg−1) ∧ (vg+1 ∧ vg+2) for all g ∈ G.

12



Figure 10. The G-envelope of the sequence in Figure 11 with G = {3, 7}.
[15, Figure 6]

Definition 29 (G-good). Assume n ≥ 5 is an integer and G ⊆ {3, 4, . . . , n − 2} is a
3-scattered subset. A thin sequence v = (v1, . . . , vn) is called G-good if there is an acute
diagram with the base conv vG such that, for any g ∈ G, the main edge passing from og
contains vg.

Now we find another way to determine which sequences are actually G-good. Therefore,
we have to define the following:

Definition 30. Let v = (v1, . . . , vn) be a thin sequence. For indexes i, ı̂, k, ̂, j satisfying
1 ≤ i < ı̂ < k < ̂ < j ≤ n, we define ρ(v, i, ı̂, k, ̂, j) as the ray passing from the point
(vi ∧ vı̂) ∧ (v̂ ∧ vj) towards vk.

Figure 11. Rays ρ(v, 1, 2, 3, 4, 5) and ρ(v, 3, 5, 7, 8, 9). [15, Figure 5]

Lemma 31 ([15, Lemma 42]). Assume n ≥ 5 is an integer and G ⊆ {3, 4, . . . , n− 2} is
a 3-scattered subset. Assume v = (v1, . . . , vn) is a π/2-thin13 sequence such that, for all
g ∈ G, the ray ρ(v, g − 2, g − 1, g, g + 1, g + 2) leaves conv v through the relative interior
of the edge conv{v1, vn}. Then v is G-good.

Proof. To prove that v is G-good, we build an acute diagram ∆ whose base is the
G-envelope vG of v and show that the main edge passing from

og := (vg−2 ∧ vg−1) ∧ (vg+1 ∧ vg+2)

contains vg for each g ∈ G.

11For simplicity, we skip the case, where (n− v)/s− 1 is integer. The difference would only be −1 in
the final result.

12See Remark 25, why we can’t simply use Corollary 21.
13In the source v is only required to be thin, but building orthogonal main edges in the proof is only

guaranteed to work, if both angles at v1 and vn are smaller than π/2. This does not change any further
proof, because this assumption is given, when this lemma gets applied.
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Figure 12. An instance of Lemma 31 with n = 12 and G = {3, 7, 10}. [15,
Figure 7]

First we build an acute diagram ∆ using Corollary 21 with base vG and
(1) for each g ∈ G the main edge from og goes towards vg,
(2) for each k /∈ {1, n, g − 1, g, g + 1} the main edge from vk is orthogonal to v1 ∧ vn,
(3) the main edge from vn passes towards a point u0 that lies sufficiently close to the
middle of conv{v1, vn} in the interior of conv v.

Now it remains to show that the edge passing from og actually contains vg. We will prove
this by contradiction: Assume there is some j ∈ G, for which vj is not contained in the
edge passing from oj. That is, there is an edge in ∆, which has its endpoint e in the
interior of conv{oj, vj}, thus outside of conv v.

Case 1. There is a path of inner arcs in ∆ from vn to v1, including e.
This is impossible, because the main edge passing from vn leaves towards u0, thus not
leaving conv v. This follows from property (v) in Lemma 22, because an inner arc of ∆
on the path from vn to v1 separating the face containing v1 ∧ vn and the face containing
vi ∧ vi+1 continues to arc “towards” v1 for decreasing i, because v itself is convex.14

Case 2. There is no path of inner arcs in ∆ from vn to v1, including e.
All main edges of ∆ go towards the interior of conv{v1, vn} (except the two at v1 and vn).
And any path from a base vertex of ∆ to v1 that includes e has to leave conv v. This path
can only leave through the interior of conv{v1, vn} because of (v) in Lemma 22 and the
convexity of v.15 So it has to intersect the path from vn to v1 before leaving conv v. This
contradicts the assumption of this case.

This shows that the edge passing from og contains vg for all g ∈ G.

We now need to define one more property of a sequence, by which we split upcoming
considerations.

Definition 32 (Slanted sequence). Let v = (v1, . . . , vt) be a thin clockwise sequence,
β ∈ (0, π/2), δ ≥ 0. We say that v is clockwise-slanted to an angle β with tolerance δ if,

14The line through this arc has to be concurrent with (v1 ∧ vn)∧ (vi ∧ vi+1), which is a point on v1 ∧ vn
outside conv{v1, vn}, because of the convexity of v. This arc can’t be moving away from vn steeper than
vn ∧ u0.

15For any intersection point, there is a leftmost incoming arc f and a rightmost incoming arc g, which
are concurrent with the base edges fl, fr or gl, gr respectively. So the outgoing arc h is concurrent with
fl and gr, which sets it between the continuations of f and g.

14



for all i, ı̂, ̂, j satisfying 1 ≤ i < ı̂ < ̂ < j ≤ t, the ray ρ(v, i, ı̂, k, ̂, j) satisfies

∠
(−−−−→
v̂ ∧ vj, ρ(v, i, ı̂, k, ̂, j)

)
< β

for all k satisfying ı̂ < k < ̂ except for at most δ such values of k.

If a counterclockwise sequence satisfies above assumptions, we call the reversed (clockwise)
sequence counterclockwise-slanted.

Figure 13. Points and angles used in the definition of slanted sequences.

Note that we couldn’t come up with an intuitive understanding of slanted sequences,
but there are some remarks: If k is moved in clockwise direction, the measured angle
decreases. Therefore, vertices failing the condition are consecutive starting after ı̂. And,
if one fixes k, ̂ and j, moving i or ı̂ in clockwise direction will increase the measured
angle. However, the same can’t be done for j and ̂.

We split the search for a good subsequence into two cases:

1. The original sequence has a large enough slanted subsequence.

2. The original sequence does not have such a subsequence.

We can show that, for each case, there is a large enough subsequence, for which Theo-
rem 24 can be applied well. This is done in the following lemmata, for which we will skip
the technical proofs, since they provide little insight.

Lemma 33 ([15, Lemma 49]). Let δ, τ,m be positive integers and n = 8τm. Let α, β be
positive reals with π/2 > β ≥ 2α. Assume v = (v1, . . . , vn) is an α-thin sequence such that
any subsequence with m points is neither clockwise-slanted nor counterclockwise-slanted
relative to the angle β and tolerance 2δ. Then v has a subsequence with (6 + δ)τ points
with extension complexity not exceeding 6τ + δ + 1.

Lemma 34 ([15, Theorem 57]). Let δ > 1 be an integer and n = 8δ2. Let v = (v0, . . . , vn)
be a π/6-thin sequence that is clockwise-slanted to the angle π/3 with tolerance 2δ. Then
v has a subsequence of size at least 0.25δ2 and extension complexity at most 3δ.
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Now we have all premises for proving Theorem 12, which states that a π/6-thin sequence
v with n = 1024τ 3 +8τ vertices contains a subsequence u with |u| ≥ 4τ 2 and xc(u) ≤ 12τ .
In light of 26 this subsequence makes optimal use of Theorem 24 in an asymptotical way.

Proof outline of Theorem 12. We try to apply Lemma 33 with β = π/3, δ = 4τ and
m = 8δ2 + 1.

If it is applicable, v contains a subsequence with the desired properties.

If it isn’t applicable, v has a subsequence u, which is slanted to the angle π/3 with
tolerance 2δ. By Lemma 34, u contains a subsequence with the desired properties.

2.1.4 Conclusion

We proved that xc(P ) ∈ O(n2/3) for any n-gon P , which leaves us wondering if this bound
can be improved further, since the lower bound for some n-gon P is xc(P ) ∈ Ω(n1/2).

Theorem 12 shows that we can find a subsequence with m ∈ Ω(n2/3) vertices with exten-
sion complexity in O(m1/2). Referring to Observation 26, Theorem 24 is applied asymptot-
ically optimal. If we wanted to improve the upper bound for xc(P ) with this approach, we
would have to find a subsequence with more vertices, for which we could apply Theorem 24
optimally. If this subsequence had Θ(n) vertices, the ensuing result of xc(P ) ∈ O(n1/2)
for any n-gon P would close the gap between lower and upper bound.

2.2 Cyclic n-Gons

In this section we give an overview of Extension complexity of low-dimensional polytopes,
Kwan, Sauermann, and Zhao [8], which proves xc(P ) ∈ O(n1/2) for any n-gon P with
vertices on a circle.

The type of approach in this paper differs form Shitov [15], since it applies the linear-
algebraic method using slack matrices.

One important insight is the “lampshade argument”, which the authors called this way
because of the geometric interpretation in three dimensions (see Figure 14). In the two-
dimensional case, the simplified form can be interpreted like this:

Given a polygon P , consider a set of consecutive facets F ′ and the set of vertices V ′,
which are not endpoints of F ′. Then if we consider the V ′ × F ′ submatrix M [V ′, F ′] of a
slack matrix M , we have rank+M [V ′, F ′] = O(1).
The reason for this is that we can enclose V ′ inside a polygon Q, such that all vertices of
Q are on the “positive slack” side of F ′ (meaning Q and P lie on the same side of every
f ∈ F ′). This polygon Q can be thought of as a “polyhedral lampshade” and one can
always build such a polygon Q with constantly many vertices.
Since Q encloses V ′, every vertex v ∈ V ′ is a convex combination of the vertices in Q.
For every vertex q of Q consider the vector uq ∈ R|F ′| of slacks for all f ∈ F ′, which is
positive by construction of Q.
And since the slack function is affine-linear, one can convex combine the slack vectors for
all v ∈ V ′ (regarding F ′) from those uq.
In other words, every row of M [V ′, F ′] is a convex combination of these constantly many
vectors uq, which shows rank+M [V ′, F ′] = O(1).
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Figure 14. On the left, a small patch of facets near the north pole is far away
from a collection of vertices. On the right, a “polyhedral lampshade” encloses
all the vertices in our collection, and lies entirely on the “positive slack” side
of each of the facets in our patch. [8, Figure 2]

Kwan, Sauermann, and Zhao developed this argument even for higher dimensions. Since
we focus on polygons in this paper, we will only cover the two-dimensional theorem.

Definition 35. A polygon is called cyclic if all its vertices lie on a common circle.

Theorem 36 ([8, Theorem 1.3]). Let P be a cyclic polygon with n ≥ 182 vertices.
Then xc(P ) ≤ 24n1/2.

The approach follows these steps:

1. Split the circle into arcs, containing approximately n1/2 facets each.

2. Color these arcs with constantly many colors, such that two arcs of the same color
are “well-separated”.

3. Build a nonnegative matrix deduced from the slack matrix by rescaling rows and
adding approximately n1/2 vectors, such that the entries for vertices and facets of
the same arc are zero.

4. Apply the “lampshade argument” (in a more general form) for the rest of this matrix
and obtain the desired bound.

We will now go through these steps in more detail.

Let P be a cyclic polygon, V its set of vertices, F its set of facets and M a fixed slack
matrix of P .

We divide the circle into a set X of dn1/2e arcs, such that each arc spans from one vertex
to another vertex (including both) and contains at most dn1/2e facets, i.e. facets with both
endpoints in the arc, and therefore at most N := dn1/2e + 1 vertices.

Definition 37 (Well-separated). We say that two arcs X,X ′ ∈ X with arc lengths ε, ε′

are well-separated, if the arc-distance between any two points x ∈ X and x′ ∈ X ′ is at
least 5 min{ε, ε′}.

Lemma 38. For every arc X ∈ X , there are at most 13 arcs X ′ ∈ X , which are not
well-separated from X and at least as long as X.
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Proof. We count how many such arcs fit into the “not well-separated space”.
Let ε be the length of X. If we put 5 arcs of length at least ε to each side of X, each other
arc would have arc-distance at least 5ε to X. So the maximal number of not well-separated
arcs with length at least ε distinct to X is 10.16

Lemma 39. We can color the arcs in X with at most 14 colors, such that arcs of the
same color are well-separated.

Proof. Order the arcs by decreasing length and color them in that order. For an arc X,
there are, by Lemma 38, at most 13 arcs of at least the same length not well-separated.
So just pick a color (from a set of 14 colors), which wasn’t assigned to those arcs and
proceed until all arcs are colored.

We color the arcs in X with colors labeled by c = 1, . . . , 14 and define Xc as the set of
arcs with color c.

We also split the columns of the slack matrix M by color, i.e. into slices M [V, Fc], where
Fc are all facets in arcs with color c. This allows us to handle each color separately, since
we can estimate rank+M ≤

∑14
c=1 rank+M [V, Fc].

For an arc X ∈ X define FX or V X as the facets or vertices inside that arc. We also call
a vertex v local to a facet f , if x ∈ V X and f ∈ FX , i.e. if they are in the same arc.

Further, we enumerate all vertices for each arc of color c, that is for each X ∈ Xc we define
a bijection φX : V X → {1, . . . , |V X |}. We define φ : Vc → {1, . . . , N} as the union of all
VX , which is well-defined, since the sets VX ∈ Vc are disjoint as they are well-separated.

Lemma 40. For all v ∈ Vc there is αv > 0, such that for all X ∈ Xc, f ∈ FX , w ∈ V X

with φ(v) = φ(w) we have αvMv,f ≥ αwMw,f .

In other words: For each vertex of color c there is a scalar, such that for each facet the
scaled slack of the local vertex is the smallest for all vertices of the same index and color.

Proof outline. We can split our considerations by φ, that is we can find αv > 0 separately
for each set of vertices v ∈ Vc with the same index φ(v).

Let’s fix some index i ∈ {1, . . . , N}. Now order all arcs X of color c with at least i vertices
decreasing by arc-length as X1, . . . , Xm. Also define vj ∈ V Xj with index i = φ(vj).

Now look at the submatrix M
[
{v1, . . . , vm}, FX1 ∪ · · · ∪ FXm

]
of the slack matrix, which

we will treat kind of like a square matrix with one entry being M
[
{vj}, FXj

]
.

For each j ∈ {1, . . . ,m} and f ∈ (FX1 ∪ · · · ∪ FXm) \ FXj we have Mvj ,f > 0, since vj
cannot be a vertex of f , because all Xk disjoint as they are well-separated.

Further, for each j ∈ {1, . . . ,m}, k ∈ {1, . . . , j − 1}, f ∈ FXj and g ∈ FX1 ∪ · · · ∪ FXj−1

we have Mvj ,fMvk,g ≤Mvj ,gMvk,f .
To show this, first observe that Xj is the shortest of the regarded arcs. If we denote
its length with ε, it has arc-distance at least 5ε of every arc Xk, because they are well-
separated and ordered by decreasing length.

16Our results in this proof differ from the source. But since this number only changes a constant in
the bound, we will go on with the original numbers.
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The gist of the proof is following. Since M is representation dependent, reformulate the
statement as a ratio of distances:

d(vj, f)

d(vk, f)
≤ d(vj, g)

d(vk, g)

This can be done, since Mvk,g = 0 verifies the statement and Mvk,f > 0 holds, as the arcs
are well-separated.
The idea is as follows: Because vj is local to f , but vk and g are relatively far away (at
least 5ε in arc-distance), d(vj, f) is much smaller than d(vk, f) and d(vj, g). d(vk, g) may
be large, but then we can argue using the triangle inequality that then also one of d(vk, f)
or d(vj, g) has to be large.17

After those two properties of M are shown to be true, we can apply a technical lemma
[8, Lemma 10.3], which gives us factors αv1 , . . . , αvm , such that αviMvi,f ≤ αvjMvj ,f for
all f ∈ FXi .

For each i ∈ {1, . . . , N} we define vectors t(i) ∈ R|Fc|. For each X ∈ Xc, f ∈ FX :

t
(i)
f =

{
0 if i > |V X |
αvMv,f else, with v = φ−1X (i)

The vectors t
(i)
f are the scaled slacks for the local vertices (regarding f) with index i.

We define the matrix K ∈ R|V |×|Fc|, for which we will later apply the (general) “lampshade
argument”. For all f ∈ Fc we set

Kv,f =

{
αvMv,f − t(φ(v))f if v ∈ Vc,
Mv,f else.

In other words, we manipulate the rows of K with vertices of color c, by scaling them,
such that for vertices with the same index the slack of the local vertex is smallest, and
then subtracting that smallest scaled slack.

The purpose of this manipulation is that for each X ∈ Xc, any vertex v ∈ V X and any
facet f ∈ FX , we have Kv,f = 0, i.e. all entries of K[V X , FX ] are zero, while K is still
nonnegative (that’s why we had to scale all rows first).

Lemma 41. The matrix K has nonnegative entries and satisfies rank+K ≤ 8|Xc|.

For the proof we need the generalized “lampshade argument”, how it was originally proved
by Shitov [14, Lemma 3.1]. It was simplified for this use case to allow simpler notation.

Lemma 42. Let P be a polygon, and let V , F and M be defined like above.

Let X ⊆ V be a set of consecutive vertices of P , and let F ′ ⊆ F be the set of facets of P
with both endpoints in X.

Let M ′ be a matrix with rows indexed by V \X and columns indexed by F ′, such that the
following condition holds for each vertex v ∈ V \X:

There are real numbers αv > 0, βv ≥ 0 and a vertex xv ∈ X such that
M ′

v,f = αvMv,f − βvMxv ,f for all f ∈ F ′.
Then, if all the entries of M ′ are nonnegative, we have rank+M

′ ≤ 8.

17Remark that this is the only place we use that P is cyclic beside Definition 37.
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We will not prove this lemma here. But remark, that it does not require P to be cyclic.

Proof outline of Lemma 41. We partition K into submatrices K[V, FX ] for X ∈ Xc and
show that each of those |Xc| slices has nonnegative rank at most 8.

We know K[V X , FX ] = 0 by definition of K. For estimating the nonnegative rank, we only
have to consider K[V \ V X , FX ]. There are three possibilities for rows of this submatrix:

� If v /∈ Vc, then Kv,f = Mvf for all f ∈ FX .

� If v ∈ Vc and φ(v) > |V X |, then Kv,f = αvMv,f for all f ∈ FX , because t
(φ(v))
f = 0.

� If v ∈ Vc and φ(v) ≤ |V X |, then Kv,f = αvMv,f − αxvMxv ,f for all f ∈ FX , where
xv ∈ V X with φ(xv) = φ(v) is the vertex local to f with the same index as v.

From this we can see that K[V \V X , FX ] is nonnegative by the choice of αv in Lemma 40.

To show rank+K[V \ V X , FX ] ≤ 8 we apply Lemma 42 for each of the above cases with
V X as our set of consecutive vertices.
We have to choose αv, βv and xv for each vertex v ∈ V \ V X .

� v /∈ Vc: αv = 1, βv = 0 and xv ∈ V X arbitrary.

� v ∈ Vc and φ(v) > |V X |: αv already defined, βv = 0 and xv ∈ V X arbitrary.

� v ∈ Vc and φ(v) ≤ |V X |: αv already defined, choose xv ∈ V X with φ(xv) = φ(v) like
above and set βv = αxv .

By Lemma 42 and K[V X , FX ] = 0 we can conclude:

rank+K[V, FX ] = rank+K[V \ V X , FX ] ≤ 8

As a result, there are 8 |Xc| nonnegative vectors, such that each row of K can be written
as nonnegative linear combination of them. Together with the N vectors t(i) we can write
every row of M [V, Fc] as a nonnegative linear combination of 8 |Xc|+N vectors. Therefore,
rank+M [V, Fc] ≤ 8 |Xc|+N .

In summary:

xc(P ) = rank+M ≤
14∑
c=1

rank+M [V, Fc] ≤ 8|X |+ 14N ≤ 22n1/2 + 36
(n≥182)
≤ 24n1/2
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2.3 Comparison

In this section we compare the results and methods from Shitov [15] and Kwan, Sauer-
mann, and Zhao [8] by working out general similarities and differences. Further, we look
at how both bounds are achieved numerically. At the end, we examine how the proofs
could be altered to be used in the other’s setting.

We start with a quick overview of both results:

� Shitov [15] proves Theorem 6, stating that every n-gon P has xc(P ) ∈ O(n2/3).

� Kwan, Sauermann, and Zhao [8] prove Theorem 36, which states that every cyclic
n-gon P has xc(P ) ∈ O(n1/2).

First we list the general similarities of both approaches:

� Both follow the strategy of splitting the polygon into smaller slices.
Shitov splits the polygon into 12 slices which are treated separately.
Kwan, Sauermann, and Zhao split the polygon into O(n1/2) arcs containing O(n1/2)
vertices, but they are handled interdependently.

� There is some notion of enveloping vertices in both.
Shitov requires an envelope around vertices in the central Theorem 24. It is used to
build an extended formulation for this specific polygon.
Kwan, Sauermann, and Zhao use a “lampshade argument”, which builds a polygon
around vertices away from a set of facets, proving that a part of the slack matrix
has constant nonnegative rank.

Even though both methods have some ideas in common, they are very different.

� Shitov uses a purely geometric approach.
Kwan, Sauermann, and Zhao use the linear-algebraic strategy using slack matrices
for their main reasoning. But lemmata are often proved geometrically. The approach
has the advantage that transformations on the slack matrix, which don’t alter the
nonnegative rank, can not always be represented geometrically.

� There is another difference in how they treat subsets of vertices:
Shitov inductively extracts a large subsequence with small extension complexity
(ignoring all other vertices).
Kwan, Sauermann, and Zhao split their consideration by constantly many colors,
but always handle the dependencies to all other vertices.

We continue by analyzing how each approach gets to its asymptotical bound numerically.

Shitov’s result of xc(P ) ∈ O(n2/3) for arbitrary n-gons P :

� There is a subsequence u with m ∈ O(n2/3) vertices for every n-gon, for which the
main theorem can be applied asymptotically optimal.
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� It provides the bound xc(u) ∈ O(m1/2) = O(n1/3) for the extension complexity of
that subsequence.

� Inductively extracting such a subsequence proves the bound xc(P ) ∈ O(n2/3).

Kwan, Sauermann, and Zhao’s result of xc(P ) ∈ O(n1/2) for cyclic n-gons P :

� The circle is split into |X | ∈ O(n1/2) arcs.

� The slack matrix is split into O(1) “color columns”, for which a matrix K with
rank+K ∈ O(|Xc|) is constructed (Xc are the arcs of color c).

� Each “color column” in the slack matrix has rank+M [V, Fc] ∈ O(|Xc|+ n1/2).

� Joining these columns results in rank+M ∈ O(|X |+ n1/2) = O(n1/2).

Finally, we have a look at how each procedure could be used in the other’s setting:

� Even though Kwan, Sauermann, and Zhao state that Lemma 10.2 is “the only place
where we use this assumption that P is cyclic” [8, p. 22], the definition of well-
separateness uses arc-distance. Generalizing the proof requires something like a
boundary-distance, where the distance between two vertices is the sum of the lengths
of the edges separating them. In this setting, a counterexample for Lemma 10.2 can
be found easily, because well-separated facets and vertices can still have small slacks
(see Figure 15).
We conclude that this approach can’t be adopted easily for the general case, since
it relies on P being cyclic in central parts. Still, the methods used may be of value
for future approaches. This also aligns well with the authors’ opinion [8, p. 28].

� If we want to improve the bound achieved by Shitov for cyclic polygons, we have
to find a larger subsequence for which we can apply Theorem 24 optimally. In the
best case, we can find a subsequence with Θ(n) vertices, where |V |, |S|, δ ∈ Θ(n1/2)
in Theorem 24. Then we could obtain the optimal upper bound of O(n1/2) for the
extension complexity.
Here, we were not able to provide such an improvement.

Figure 15. Counterexample for Lemma 10.2 [8], if P weren’t cyclic.
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3 Lower Bounds for the Extension Complexity

In this section we prove that there is a polygon P with xc(P ) ∈ Ω(n1/2).

After the proof, we will explain the key concepts of the applied theorem and show how
to apply it in general.

The central piece of the proof is Theorem 1 from Averkov, Kaibel, and Weltge [1], which
we adopt for the case of linear extended formulations.

We define ‖·‖ to be the Euclidean norm and Bd := {x ∈ Rd | ‖x‖ ≤ 1} to be the
d-dimensional unit ball.

3.1 Introducing the Applied Theorem

First we have to define the Hausdorff distance of two compact sets, which can be thought
of “the longest distance one can be forced to travel from a point in one of the two sets to
the other set”. See Figure 16 for an example.

Figure 16. Hausdorff distance example. [11]

Definition 43 (Hausdorff distance). The Hausdorff distance of two non-empty compact
sets X, Y ⊆ Rd is defined by

distH(X, Y ) := max

{
sup
x∈X

inf
y∈Y
‖x− y‖ , sup

y∈Y
inf
x∈X
‖x− y‖

}
.

Theorem 44 ([1, Theorem 1], adopted). Let P be a family of polytopes in Rd of dimen-
sions at least one with 2 ≤ |P| < ∞ such that each P ∈ P has an extended formulation
of size m. Let ρ > 0 and ∆ > 0 be such that each P ∈ P is contained in the ball ρBd and,
for every two distinct polytopes P ∈ P and P ′ ∈ P, one has distH(P, P ′) ≥ ∆. Then

m2 ≥ log2|P|
8d (1 + log2(2ρ/∆) + log2 log2|P|)

=: B.

In particular, we have
max{xc(P ) | P ∈ P} ≥

√
B.
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3.2 Proving the Lower Bound

Corollary 45. There exists a (cyclic) polygon P with xc(P ) ∈ Ω(n1/2).

Proof. To apply Theorem 44 we have to pick a family of polytopes P . Then we have to
determine ρ and ∆ and bound log2|P| from below and log2 log2|P| from above.

So we choose n2 fixed points evenly on the unit circle such that they would form a regular
polygon. Let Pn be the family of polygons, where each polygon is the convex hull of n
points chosen from the n2 points on the unit circle.

Then ρ = 1 holds, since all polygons are contained in the unit circle.

For two distinct polygons P, P ′ ∈ Pn one of them has a vertex v, which the other one
does not have. W.l.o.g. v /∈ P, v ∈ P ′. As a result, distH(P, P ′) ≥ infp∈P ‖v − p‖ ≥ dmin.
See Figure 17 for the definition of dmin.

Figure 17. Definition of dmin.

1− dmin = cos

(
2π

n2

)
dmin ≥ 1−

(
1−

(
2π
n2

)2
2

)
= 2

π2

n4
=: ∆

For the estimate we used cos(x) ≥ 1− x2

2!
.

Since each polygon in Pn is defined by n points, chosen from a set of n2 points, |Pn| =
(
n2

n

)
.

With (n
k
)k ≤

(
n
k

)
≤ nk we can estimate nn =

(
n2

n

)n
≤ |Pn| ≤ (n2)

n
= n2n,

log2|Pn| ≥ n log2 n and log2 log2|Pn| ≤ log2(2n log2 n) = 1 + log2 n+ log2 log2 n.

Now we can estimate B from Theorem 44:

B =
log2|Pn|

8d (1 + log2(2ρ/∆) + log2 log2|Pn|)

≥ n log2 n

16 (1 + log2(n
4/π2) + 1 + log2 n+ log2 log2 n)

=
n log2 n

16 (2− 2 log2 π + 5 log2 n+ log2 log2 n)

≥ n

16 · 6
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For the last inequality we used 2− 2 log2 π ≤ 0 and 5 log2 n+log2 log2 n
log2 n

≤ 6 for n ≥ 1.

Therefore, we can conclude

max{xc(P ) | P ∈ Pn}
(Th. 44)

≥
√
B ≥ 1

12

√
n.

3.3 Key Ideas Behind the Applied Theorem

The central idea of Theorem 44 is to encode the extended formulations. Then one counts
how many extended formulations fit into the containing volume, since those formulations
are separated themselves.

Here is a short outline of the proof:

1. Each extended formulation can be normalized, i.e. P = ϕ(Q) + t with
Q = {x | Ax ≤ 1}, Bn ⊆ Q ⊆ nBn and ϕ being linear.

2. Each polytope Pi ∈ P , where Pi = ϕi(Qi) + ti and Qi = {x ∈ Rni | Aix ≤ 1}), is
encoded trough Pi 7→ (Ai, ϕi, ti).
From now on everything takes place in the encoding vector spaces Vn, where n is
the dimension of the extended formulation.

3. The encodings are partitioned into sets Wi by the dimension of Qi.

4. The distance between two encodings w,w′ ∈ Wi can be bounded by ‖w − w′‖ ≥ ∆.

5. The overall space required can be bounded by ‖w‖ ≤ 3ρn2,∀w ∈ Wi.

6. One creates small balls around each encoding with radius ∆/2 and a ball containing
all small balls with radius 3ρn2 + ∆/2 around the origin.

7. By comparing volumes, one can bound the number of possible polytope encodings
|Wi| from above depending on ρ, ∆, m and d. Note that the dimension of Vn and
therefore the computed volume depend on m and d.

8. These bounds are added by |P| =
∑
|Wi| and solved for m.

The lower bounding for the extension complexity, i.e. max{xc(P ) | P ∈ P} ≥
√
B, is

achieved by inverting the implication:(
(∀P ∈ P : xc(P ) ≤ m)⇒ m2 ≥ B

)
⇒
(
m2 < B ⇒ (∃P ∈ P : xc(P ) > m)

)
This theorem can be applied like in Corollary 45 by picking a family P and bounding
ρ from above, ∆ from below, log2|P| from below and log2 log2|P| from above. It then
provides a lower bound for the largest extension complexity of one polytope P ∈ P .
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4 Concluding Remarks

In this paper we looked at the best known bounds for the extension complexity of polygons.

For cyclic polygons P we know xc(P ) ∈ Θ(n1/2).

For arbitrary polygons P , we only know xc(P ) ∈ Ω(n1/2) ∩O(n2/3).

Kwan, Sauermann, and Zhao conjectured that cyclic polygons have worst-case extension
complexity, i.e. xc(P ) ∈ Θ(n1/2), because they “seem to represent quite a diverse cross-
section of the space of all polygons” [8, p. 3].

On the other hand, Shitov expected that pc(n) = n1/2 · α(n) with unbounded α(n) [15,
Conjecture 61].

He reasons that the method developed in his paper doesn’t seem to allow an O(n1/2)
upper bound for the worst-case n-gon complexity. This means there is no subsequence of
Θ(n) vertices, for which we could apply Theorem 24 optimally.

And he also goes on explaining that Padrol [9] proved

wcc(d, n) ≥ 2
√
dn− d− d+ 1, (3)

where wcc(d, n) is the largest possible extension complexity of a polytope with n vertices
in a d-dimensional space. If the conjecture were false, the bound in (3) would become
asymptotically optimal for d = 2 This is not expected, since Kaibel and Weltge showed
wcc(m2, 2m) ≥ 1.5m for the correlation polytope [7]. This is asymptotically much greater
than (

√
2)m, which is the result of equation (3) in that case.

Thus, the question of worst-case extension complexity for polygons remains exciting.

A Proof Dependency Graph

The following graph gives an overview of the dependencies in the proofs from Shitov [15].

Each node corresponds to a theorem, lemma or corollary given by its number. Each edge
indicates a dependency on the statement it is directed at. And the boxes group statements
from different sections (“Sec.” is short for “Section”).

Definitions were omitted, as they made the graph too crowded. Also, some edges might be
missing, because dependencies aren’t always obvious, when one is immersed in a subject
for some time.
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